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Abstract -
The majority of innovative approaches in the realm of the 

retrospective generation of building information models for 
existing structures deal with geometry extraction from point 
clouds or engineering drawings. However, many building-
specific o r o bject-specific at tributes fo r th e en richment of 
building models cannot be inferred from these geometric 
and visual data sources, and thus their acquisition requires 
the analysis of textual building documentation. One type of 
such documents are structural bridge records, which include 
specifications r egarding u sed m aterial, l ocation, structural 
health, modifications, a nd a dministrative d ata. T he docu-
ments are semi-structured and hardly allow a robust infor-
mation extraction based on traditional programming, since 
the implementation of such an approach would result in a 
complex nesting of conditional clauses, which is not guaran-
teed to remain effective for future versions of the document 
structure. Therefore, a data-driven approach is adopted for 
the information extraction. This paper demonstrates an end-
to-end semantic enrichment method, taking a bridge status 
report as input and feeding structured object parameters di-
rectly to the building information modeling software for the 
enrichment of the model. The proposed method requires lit-
tle user interaction and achieves production-ready accuracy. 
It is tested on an as-built model of an actual bridge and shows 
promising results.
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1 Introduction

In the operations and maintenance phase of a structure, 
building information modeling (BIM) can facilitate the ac-
cess to important condition data. [1] For the majority of 
the bridges currently in use, however, an as-is model does 
not exist. [2] Since the manual and retrospective modeling 
of these structures is a demanding task even for expert 
engineers [3], current research aims at the full or partial

automation of the task. The geometrical aspect of the
model is mostly dealt with by the acquisition and process-
ing of point clouds, images or construction plans. [4, 5]
In any case, to produce a useful BIM model, not only the
structure’s geometry, but also semantic information about
the covered parts has to be provided and included into
the model. [6] This sort of information is hardly present
in 2D drawings and not at all in point clouds or images.
Therefore, additional sources of information have to be
utilized. For bridges specifically, these can be documents
like structural records or inspection reports.

In particular, this study deals with the automatic ex-
traction of the needed information from structural bridge
records and the integration of the discovered information
into bridge models with BIM software. The source doc-
uments are text-based and semi-structured in the sense
that the data is represented in an almost tabular manner,
which is however not encoded as a formal table in the
document. This is to facilitate the common exchange and
storage of the documents in widely available formats such
as PDFs. For that purpose, multiple strategies are pur-
sued to extract the textual data, and to fill in pre-defined
building part attributes. After the relevant information is
extracted, it is fed into the modeling software Autodesk
Revit by means of an import tool developed with the open
source visual programming language Dynamo. The pro-
posed method therefore represents an end-to-end semantic
enrichment procedure for bridge digital twins. Both labor-
intensive tasks, namely the extraction of information from
text documents and its integration into BIM models, are
addressed by the method. This study therefore contributes
to automating the process of semantic enrichment.

The paper is organized as follows: In Section 2, an
overview of existing semantic enrichment approaches for
digital twins is provided. Also, prior works towards infor-
mation extraction from bridge documents are listed. Sec-
tion 3 gives deeper insight into the structure of the source
document type for this study and deals with the underly-
ing implementation of the proposed information extraction
method. It also includes an overview of the model enrich-
ment procedure. In Section 4, the information extraction
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method is tested by using a test set of admissible bridge
records. To give an impression of the practical value pro-
vided by the methodology, it is demonstrated in Section
5 by the example of a real world bridge, along with its
respective BIM geometry and the carried out enrichment.
Section 6 concludes the paper by discussing some of the
methodology limitations and an outlook to future works.

2 Related Works
Though the number of scientific contributions on the

subject of semantic enrichment of BIM models is limited,
the studies [7, 8, 9] provide elaborate literature reviews.
Previous works have focused mainly on inferring semantic
information from the BIM model geometry itself. Belsky
et al. [10] presented the SeeBIM software, which allows
engineers to manually define rules to create new object
relations in BIM models according to the defined condi-
tions. For example, adjacent objects can be aggregated
if certain requirements are fulfilled, e.g., matching object
types and near proximity. An extension of the software is
shown in [11], which also includes the possibility to add
alphanumerical information from external sources (e.g.,
bridge management systems provided by highway agen-
cies) to the model. Bloch and Sacks [8] presented an
approach to enrich objects with a semantic specification
by inferring it from their geometry with the help of ma-
chine learning. In particular, in this example, the room
types of a building story are inferred from the floor plan
geometry. In comparison with a rule-based approach, the
machine learning approach shows superior results in this
example. In an approach by Isailović et al. [12], damage
information is gathered by means of point cloud acqui-
sition and processing and is later inserted into the BIM
model of a bridge. In this example, the model is enriched
with detailed geometric and with semantic information.
A difference of the method proposed in this paper to

most of the previous semantic enrichment approaches is
the source of the additional semantic information. In-
stead of inferring the semantic information directly from
the model’s parts (e.g., by their shape and adjacencies),
in this approach, external documents are consulted and
processed.
On the subject of information extraction, there have

been some publications with application in the built envi-
ronment as well: Liu and El-Gohary [13] applied a CRF-
based named entity recognition approach to extract infor-
mation about deficiencies, their causes and other related
entities from bridge status reports. Using their devel-
oped bridge deterioration ontology [14], they made use of
domain-specific semantics to improve the NER classifier.
The corpus used in their study consists of the reports for
multiple bridges, each includingmany years of bridge con-
dition records, and is written in natural language. Moon

et al. [15] followed a similar method, while choosing a
Bi-LSTM architecture instead of the CRF model. Also,
they made use of the active learning concept to reduce the
annotation effort. Capitalizing on the US National Bridge
Inventory database, Li and Harris [16] created a text cor-
pus from Virginia bridge status reports. They trained a Bi-
LSTM-CRF classifier to recognize damage types, damage
severity and the respective locations in the bridges. It was
shown that the model outperforms alternative models for
the task at hand [17]. Li et al. [18] propose an innovative
recognition method for both flat and nested named enti-
ties in bridge inspection reports. It is based on the BERT
language model, a Bi-LSTM neural network and uses lexi-
con augmented word embeddings. Their approach mainly
differs from previous approaches by the novelty that the
question-answering technique is used to find the desired
entities (name, structural elements, location, defects, de-
scriptions) in the text. Liu and El-Gohary [19] developed
a dependency parsing method to extract the relations be-
tween found entities in bridge reports. They used semantic
and syntactic features of the text to train a neural network
ensemble classifier and achieved promising results, both
for the entity-level recognition and the relation extraction.
Inspired by the literature, multiple machine learning mod-
els are tested in this study.

3 Methodology
For the understanding of the method presented in the

following sub-sections, it is useful to have a basic idea
of the source documents’ structure. Each bridge record
in the document corpus follows a strict table of contents
and all reports include the same chapters. However, it is
not guaranteed for each chapter to actually display con-
tent. If a certain piece of information is not provided, the
respective section in the document might be empty. Also,
even though the chapters themselves are organized in a
very structured way, there exist certain exceptions to that
structure, e.g., if special works have been carried out on
site and are documented accordingly. After all, varying
bridge designs also come with varying document struc-
tures – may it be for different numbers of parts or even
whole part-structures.
Provided by the regional highway agencies, the records

list bridge details such as administrative data (owner, oper-
ator), geometric data (position, coordinate system, align-
ment), mechanical information (material, steel grade, coat-
ing) and various other types of information. For a human
reader, the documents appear to have tabular structure.
However, encoded in the PDF files is only line-by-line
text with lots of white space and formatting, which makes
the documents appear like tables. To recreate the tabular
structure, one cannot rely on the occurrence of specific
keywords or line-breaks, as the included keys vary from
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Figure 1. Process diagram of the presented end-to-end extraction and enrichment process.

document to document and as slight imperfections in the
formatting are an issue. A traditional programming ap-
proach based on regular expression will therefore require
an infeasible number of rules and rule exceptions to extract
keys and values. Thus, this particular document structure
emphasizes the need for a flexible text interpreter.

3.1 Training dataset

To train the machine learning model discussed in Sec-
tion 3.3, a sufficiently large training dataset is necessary.
Therefore, a total of 38 status reports are gathered, pre-
processed and annotated manually to be suited for training
the neural network and validating the method. The reports
cover road and highway bridges in the state of North-Rhine
Westfalia in Germany. In total, 98 distinct labels are to be
differentiated. Each label represents a parameter name to
be extracted with its respective value. Within this study, it
is assumed that the documents are free of contradictions,
i.e., each parameter is assigned a single value.
It is noted that, depending on the types of bridges involved
(e.g., truss or beam bridge) and the used construction ma-
terial (e.g., steel or concrete), a suitable set of training data
files has to be selected to include training cases for all the
desired pieces information from the reports.

3.2 Pre-processing

Since the documents originally are in PDF format, the
textual data is first detached from the typeset document
with the use of a PDF manipulation library. Since there
is no inherent table structure in the documents, it is con-
verted fromPDF to TXT format line-by-line. Excesswhite
space is removed. Having each report present in TXT for-
mat, they are segmented in accordance with the highest
hierarchy level of the table of contents, which is the only
structure of the document relied upon. This segmentation
shortens the length of the individual sequences being fed
to the model, and with it the number of unique labels a
single model has to differentiate. This is because separate
models are trained for each of the document sections (c.f.
Section 3.3). After the the segmentation, the training text
files are annotated manually, labeling the values of the
key-value pairs with the name of the key (see Fig. 2. This
label choice facilitates the post-processing, as a mapping
from a predicted label to a word sequence will directly
represent a key-value pair. Moreover, the labels are given
prefixes according to the CoNLL 2002 benchmark format
[20], i.e., the label of the first token in an entity is extended
by the prefix “B-”, all the following tokens of the entity
receive the prefix “I-”. This doubles the number of distinct
labels to 196.
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Bauteil Unterbau

Baustoff Stahl Stahlgüte S 235

B-MAT B-SGR
I-SGR

B-BPT

Figure 2. Example of the labeling scheme in a doc-
ument excerpt. Key names are the label names for
the values: Bauteil (building part)→ BPT, Baustoff
(material)→MAT, Stahlgüte (steel grade)→ SGR.
Prefixes are in accordance with CoNLL 2002 [20]
format.

3.3 Extraction Algorithm

Without all the imperfections to the document structure
mentioned in Section 3, a hard-coded approach based on
regular expressions would be the ideal way to extract the
needed information, however, it simply does not comewith
the flexibility needed in order to deal with the status reports
at hand. Therefore, a more tolerant, data-driven approach
is adopted, enabling the processing of documents with
slightly different structure, and even for possible future
changes to the standard structure.
A fitting candidate approach are recurrent neural net-

works (RNNs), which are well-suited for sequence pro-
cessing and have proven useful in all sorts of natural
language processing tasks. Hochreiter and Schmidhu-
ber [21] introduced Long-Short-Term-Memory (LSTM)
RNNs, which are, in contrast to simple RNNs, able to
deal with much longer sequences. Since the bridge record
chapters typically include hundreds of words, LSTMs are
chosen for the task. Furthermore, bi-directional LSTMs
(Bi-LSTMs) may provide an additional advantage over
LSTMs, since they can infer a word’s label not only with
the knowledge of all words before it, but also those af-
ter the particular words. This may be of use especially
in those situations, in which a certain key word does not
have an associated value following it, if the information
is missing. A one-directional LSTM may tend to falsely
interpret the following word as a value whatsoever, where
a Bi-LSTM may handle the situation better, supposedly.
Another possible extension to the model is to append a
conditional random field (CRF) layer, which may improve
the performance as well [22]. A CRF infers token labels
based on the conditional probability that a label occurs
given the neighboring labels, thus, it takes the context into
account. In the course of this study, multiple model archi-
tectures are tested for the sequence tagging: (1) a CRF, (2)
an LSTM, (3) an LSTM + CRF layer, (4) a Bi-LSTM, (5)
a Bi-LSTM + CRF layer, and (6) a Bi-LSTM followed by

another LSTM and a CRF layer. As a classification layer, a
fully connected (FC) layer is inserted after the LSTM lay-
ers. It serves as a hidden layer in the models which include
a CRF for classification. Also, to transform tokens to a
vector representation, each model includes an embedding
layer, mapping words to vectors of size 𝑑𝑒. All included
LSTM layers have the hidden dimension ℎ𝑑 .
To find the set of best hyper-parameters for each of the

model architectures, a Bayesian optimization was run with
the help of the KerasTuner library [23] to find concrete
values for the hidden dimension 𝑑ℎ and the embedding
dimension 𝑑𝑒. The optimal hyper-parameters found for
the models being applied to the dataset at hand are sum-
marized in Table 1. All the listed models are trained and
evaluated in Section 4.

Table 1. Model hyper-parameters found with
Bayesian Optimization, by model design.

Model design 𝑑ℎ 𝑑𝑒
LSTM 256 928
Bi-LSTM 320 1024
LSTM + CRF 800 896
Bi-LSTM + CRF 512 1024
Bi-LSTM + LSTM + CRF 32 768

3.4 Post-processing

As the model’s output is simply a tagged sequence, it
needs to be cast into a tabular form for further use. There-
fore, consecutive tokens with matching tags are simply
concatenated and condensed to a single key-value entry in
the output table. The output is saved as a CSV file to serve
as input to the desired BIM software.
It is noted that incorrect predictions can lead to contra-

dictory value assignments. Therefore, after the automatic
processing of the documents, an engineer still has to ex-
amine the output file and resolve potential conflicts.

3.5 Model Enrichment

Dynamo for Revit is a Python-based visual program-
ming tool that is available to Revit users to allow visually
constructed scripts and logic. It allows communication
with the Revit API in Python which is a great advantage
for developers and enables the automatic enrichment of
the BIM model as follows:
One step in the process of BIM modeling is the creation
of parameters in Revit. However, it is also one of the
most time-consuming processes since the creation of the
parameters and assigning their values are typically done
manually. The complexity goes to great heights when the
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Figure 3. Schematic view of the best performing model design. The example sequence translates to: “Building
part substructure building material steel steel grade S 235 supplier”

project has thousands of elements and many layers of clas-
sification. Whereas the Revit API provides a great value
in automating processes, it does not contain methods of
creating project parameters and for that, a workaround is
performed through the use of shared parameters. The de-
veloped program reads the parameter names and values
from the CSV output file of the RNN model. This data
is further processed and grouped in Dynamo. The pro-
cessing of parameters and values includes supplementing
them with information to make them readable in Revit.
These supplements include adding the data type of each
value and choosing the element category for which the
list of parameters will be created. After that, the program
reads the values and links each parameter with the correct
value in order to complete the process of semantic en-
richment. In addition, a graphical user interface has been
created for the program to be user-friendly and add a level
of flexibility for the users. Moreover, the program is in-
tegrated with Revit as an add-in in the Revit ribbon to act
as a complementary built-in tool to serve the automation,
optimization, and ease of use.

4 Validation
To ensure the satisfactory performance of the chosen

sequence tagging model, a 10-fold cross-validation exper-
iment is carried out with the annotated corpus. In each of
the 10 runs, the dataset is split into 10 parts, thereof 9 for

training and one for testing. The performances are aver-
aged to compute the final performance scores summarized
in Table 2. The precision 𝑃 and the recall 𝑅 are defined
by

𝑃 =
#TP

#TP + #FP

and 𝑅 =
#TP

#TP + #FN ,

where #TP is the number of true positives, #FP is the
number of false positives and #FN is the number of false
negatives in the sequence tagger’s predictions. The F1
score is the harmonic mean of precision and recall. Since
the Bi-LSTM-CRF shows the best performance among
the tested model designs, it is selected for the information
extraction pipeline.
The models are implemented in TensorFlow 2.7 [24], and
all computations are executed under Ubuntu 20.04.3 LTS
using an NVIDIA A100 GPU.

5 Demonstration

To test the proposed method on a real-world example,
the highway bridge Hachmannbrücke, located in Ham-
burg, Germany, ismodeled inAutodeskRevit and enriched
with information from its respective bridge record. The
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Table 2. Performance scores of the model variations
in the 10-fold cross-validation experiments. Each
number represents the averaged result from testing
the model on the test set of each of the 10 folds.

Model design P R F1
CRF 0.430 0.437 0.416
LSTM 0.970 0.966 0.965
LSTM + CRF 0.959 0.959 0.957
Bi-LSTM 0.967 0.964 0.963
Bi-LSTM + CRF 0.970 0.969 0.967
Bi-LSTM + LSTM + CRF 0.958 0.957 0.955

model comprises 1481 elements.
The user interface is depicted in Figure 4 and aids the

engineer as follows: The information extraction pipeline
takes a bridge record as input and outputs a CSV file. The
user imports the file via the GUI (1) and proceeds with the
selection of parameters and their respective values to be
imported (2). The GUI snippets (4) and (5) depict the cre-
ated and the enriched element parameters of the model (3),
respectively. In the shown example, new parameters are
assigned to elements of the category Fundamente (foun-
dations), e.g., Hauptbaustoff (material) and Baujahr (year
of construction). Without additional user input, they take
the values as extracted from the original bridge record.
In this example, the method achieves an accuracy of

86%, given the parameter names listed in Figure 4. All
of them are extracted correctly, except the parameter Be-
merkungen (i.e., remarks). Presumably, this is because
remarks can have arbitrary content, contrarily to parame-
ters like steel grade or year of construction, which have a
limited set of possible values and are, thus, more likely to
be recognized by the model.
Without the trained extraction method and the designed

Revit GUI, the user has to read into the PDF file, find
the desired values, create the needed parameters for the
relevant objects and assign the values to them one-by-
one. For the selected parameters to be imported, the pro-
posed method greatly facilitates the process compared to
the manual editing of model file. Nonetheless, this semi-
automatic model enrichment process still depends on a
proficient user and their understanding of the Revit soft-
ware.

6 Conclusions
Few approaches in the research subject of retrospective

BIM model creation deal with the semantic enrichment of
bridge models, and if they do, their focus is mostly on in-
ferring information from geometry. This paper, however,
demonstrates the value of text documents as a source of in-
formation for semantic enrichment. The study’s contribu-

tions are twofold: First, an ML-based information extrac-
tion algorithm is proposed for the processing of structural
bridge records provided by German highway agencies. It
shows promising performance in the cross-validation ex-
periments and for the real-world example document. Sec-
ond, an end-to-end pipeline is developed for the semantic
enrichment of bridge BIMmodels, including anML-based
information extraction method and a Dynamo tool to in-
corporate the data into themodel. The data integration tool
is also available as a Revit add-in, which might promote
industry acceptance.
However, the presented approach has three main draw-

backs: First, it is limited to bridges and, moreover, to
these very kind of documents, at least as far as no other
training data is provided. Second, it has only been tested
for Revit for now, but since the extracted data is stored in
an open format, it can serve as input data for other BIM
modeling software or for the enrichment of models saved
in IFC format as well. Lastly, as the post-processing does
not include any semantic processing to ensure the quality
of the results, it is advisable for an engineer to check the
exported file for errors before importing it to the model. In
follow-up studies, it is anticipated to automate this check
for the most apparent extraction errors.
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